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Abstract

Cryo-electron microscopy of ‘‘single particles’’ is a powerful method to analyze structures of large macromolecular assemblies

that are not amenable to investigation by traditional X-ray crystallographic methods. A key step in these studies is to obtain atomic

interpretations of multiprotein complexes by fitting atomic structures of individual components into maps obtained from electron

microscopic data. Here, we report the use of a ‘‘core-weighting’’ method, combined with a grid-threading Monte Carlo (GTMC)

approach for this purpose. The ‘‘core’’ of an individual structure is defined to represent the part where the density distribution is

least likely to be altered by other components that comprise the macromolecular assembly of interest. The performance of the

method has been evaluated by its ability to determine the correct fit of (i) the a-chain of the T-cell receptor variable domain into a

simulated map of the ab complex at resolutions between 5 and 40�AA, and (ii) the E2 catalytic domain of the pyruvate dehydrogenase

into an experimentally determined map, at 14�AA resolution, of the icosahedral complex formed by 60 copies of this enzyme. Using

the X-ray structures of the two test cases as references, we demonstrate that, in contrast to more traditional methods, the com-

bination of the core-weighting method and the grid-threading Monte Carlo approach can identify the correct fit reliably and rapidly

from the low-resolution maps that are typical of structures determined with the use of single-particle electron microscopy.

Published by Elsevier Science (USA).
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1. Introduction

High-resolution electron microscopy of single parti-

cles is rapidly emerging as a method with tremendous

potential to obtain molecular structures of complex

macromolecular assemblies that function as dynamic

cellular machines (e.g., Frank, 1996). Many of these

complexes are too large to be studied by NMR methods

and often do not form the three-dimensional crystals

required for X-ray crystallographic analyses, despite the
fact that the structure of individual complex compo-

nents may be obtained using either or both of these

methods. While maps derived from ordered two-

dimensional protein crystals at the highest resolutions
approach atomic resolution (e.g., Subramaniam and

Henderson, 2000), the maps derived in single particle

microscopy are most often at much lower resolution, in

the range of 10–30�AA (Frank et al., 2000; Ranson et al.,

2001; Stark et al., 2000). The use of reliable docking

algorithms to position atomic coordinates of the indi-

vidual components into these lower resolution maps

holds the promise of significant biological insight into
understanding the architectures of complex macromo-

lecular machines. A variety of computational docking

algorithms have been developed to perform reliable and

reproducible fitting into low-resolution maps (Baker and

Cheng, 1996; Chacon and Wriggers, 2002; Roseman,

2000; Rossmann, 2000; Rossmann et al., 2001; Wriggers
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et al., 1999; Wriggers and Chacon, 2001) and have been
well reviewed (Chacon and Wriggers, 2002; Wriggers

and Chacon, 2001).

Correlation coefficients have often been used as a

criterion for fitting atomic structures into low-resolution

EM maps (e.g., Jiang et al., 2001). Usually, the best

results are obtained when the surface edges of individual

components in a complex are well defined, and where

there are only small regions of densities that cannot be
assigned uniquely to a single component. However, the

use of standard correlation coefficients is not particu-

larly reliable, especially in the case of low-resolution

maps from complex assemblies where each of the

docked structures represents only a portion of the whole

map, and the boundaries of individual components may

not be clearly defined. Furthermore, the density distri-

butions of adjacent components can overlap signifi-
cantly with each other. Without taking this density

alteration into account, the correlation function cannot

correctly describe the fit between the map corresponding

to an individual component and a map of the complex,

and global optimization of the correlation coefficient

may worsen the fit. Several methods have been proposed

to overcome these difficulties. One approach involves

the use of a mask to focus on the overlapping region
between the densities arising from the individual docked

components and the target map in calculations of the

correlation coefficient (Roseman, 2000). Another ap-

proach involves altering the functional form of the

compared densities by applying a filter that enhances

detection of contours in the maps being compared

(Chacon and Wriggers, 2002; Wriggers and Chacon,

2001). However, the significant levels of noise that are
present in low-resolution maps derived from electron

microscopy can be amplified by certain density filtering

approaches, which may increase the likelihood of ‘‘false-

positive’’ fits of density.

The docking of multiple atomic structures into low-

resolution density maps is a many-body search problem.

An ideal search should accurately position and orient

each of the individual components so that a combined
density map calculated from all of these components

matches the experimentally determined map. In general,

the conformational space of such a many-body system is

prohibitively large for an exhaustive conformational

search. This computationally expensive approach can be

overcome if the many-body search problem is reduced to

a series of single-body search problems. To do this, a

target function must be defined that can recognize the
correct fit despite the possible overlap between neigh-

boring components. In this work, we present a ‘‘core-

weighting’’ approach in which the construction of a

complex structure from many components is simplified

to a series of single component fitting procedures. The

single component fitting is conducted using a grid-

threading Monte Carlo (GTMC) method that identifies

the global maximum state (best fit) among a series of
local maximum states determined by short Monte Carlo

searches originating at a variety of grid points. The de-

tails and performance of this approach are described in

the following sections. As a brief comparison, we chose

SITUS 2.0 (Chacon and Wriggers, 2002) from available

public softwares for map fitting, e.g., COAN (Volkmann

and Hanein, 1999), EMfit (Rossmann et al., 2001),

EMAN (Jiang et al., 2001; Ludtke et al., 1999), to
demonstrate the performance of our method.

2. Materials and methods

2.1. The core index

A map is described here as a distribution of a prop-

erty, e.g., density, on grid points in a certain space.

Molecules produce a high-density distribution at the

place occupied by their structures. Due to the low res-

olution of a map, neighboring structures have significant
density distributions overlapping with each other. We

operationally define the ‘‘core’’ region of a structure as

the part whose density distribution is unlikely to be al-

tered by the presence of adjacent components. The

‘‘surface’’ region is the part that is accessible or can

interact with other components. The region enclosed by

the accessible surface thus belongs to the core region.

We used a Laplacian filter (Russ, 1998), defined by the
finite difference approximation as follows, to define the

boundary of the surface,

r2qijk ¼ qiþ1jk þ qi�1jk þ qijþ1k þ qij�1k þ qijkþ1

þ qijk�1 � 6qijk; ð1Þ

where qijk and r2qijk represent the density and the
Laplacian filtered density at grid point (i, j, k). The La-

placian filter produces an approximation of the

secondary derivatives of the scalar density as respect to

spatial positions, which changes from positive to nega-

tive when crossing the surface from the exterior to the

interior.

It is then possible to define a core index, which de-

scribes the depth of a grid point located within this core
as follows:

fijk ¼
0 qijk6qc and min½fi�1jk ;fij�1k ;fijk�1	 ¼ 0

0 r2qijk > 0 and min½fi�1jk ;fij�1k ;fijk�1	 ¼ 0
min½fi�1jk ;fij�1k ;fijk�1	 þ 1 otherwise;

8<
:

ð2Þ
where fijk is the core index of grid point (i, j, k), qc is a

cutoff density, and min½fi�1jk; fij�1k; fijk�1	 represents the

minimum core index of the neighboring grid points

around grid point (i, j, k). The core index is zero for grid

points outside the core and increases progressively for

grid points located deeper in the core. Eq. (2) implies that
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a grid point outside the core region must neighbor at
least one grid point that is also outside the core. Simi-

larly, a grid point within the core cannot neighbor a grid

point outside the core unless it satisfies the condition

r2qijk 6 0 and qijk > qc. This definition indicates that

within the core, the value of the core index of a grid point

is one greater than the minimum core index of its

neighboring grid points. Therefore, the core index is

larger for a grid point deeper inside the core. To calculate
the core index, we used the following iterative procedure:

(a) Initialize the core index according to Eq. (3) so

that all core indices are 1 except the grid points at

the boundary.

fijk ¼
0 i ¼ 1 or i ¼ nx or j ¼ 1 or j ¼ ny

or k ¼ 1 or k ¼ nz
1 otherwise

8<
: ; ð3Þ

here, grid indices are from 1 to nx, 1 to ny , and 1 to nz
for x, y, and z directions, respectively.

(b) Loop over all grid points to calculate the core in-
dex of each grid point according to Eq. (2).

(c) Repeat step (b) until all grid points satisfy Eq. (2).

Upon forming a complex, the density distribution of

each component is expected to remain the same for re-

gions with a high core index. This may or may not hold

true for regions near the surface of the core with a low

core index depending upon whether the surface contacts

other components. Therefore, even in the case of an
exact fit, one cannot always expect a perfect one-to-one

correlation between the density distributions of a com-

ponent in its isolated and complexed forms.

Fig. 1 shows the distribution of core indices for two

individual proteins, A and B, and their complex. For

each map, the core index is zero outside the domains, 1

at the outer edge and becomes larger for the grid points

that are located more deeply in the core region. Since the
core region does not necessarily need to correspond to

the region with high density, it is possible that the index

can have a high value for internal cavities that are buried

well below the surface of the structure (e.g., the cavity in

protein B). When proteins A and B interact, the core

indices of their interaction surfaces dramatically in-

crease, especially in regions where the surfaces become

deeply buried in the AB complex.

2.2. The core-weighted correlation function

The match in density between two maps is often

described with a cross-correlation function as shown

below, which we refer to as the ‘‘density correlation’’

function (DC):

DCmn ¼ qmqn � qmqn

dðqmÞdðqnÞ
: ð4Þ

Here, subscripts m and n refer to the two maps being

compared,

q ¼ 1

nxnynz

Xnx
i

Xny
j

Xnz
k

qði; j; kÞ

and

dðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � q2

q

represent the average and fluctuation of the density

distribution, respectively.

An alternative measure of the correlation is the La-

placian correlation (LC), as used in the work of Chacon

and Wriggers,

LCmn ¼ r2qmr2qn �r2qmr2qn

dðr2qmÞdðr2qnÞ
; ð5Þ

where the Laplacian filtered density, r2q, is calculated

using Eq. (1).
We expect the following features when we consider

the match between the map of an individual component

and the map of a multicomponent assembly:

1. If the core region (high core index) of an individual

component matches the core region (high core index)

of the complex, the distribution property of this core

region should not change appreciably for the correct fit.

2. If the surface (low core index) of an individual
component matches the surface (low core index) of the

complex, the distribution property of the surface region

should not change appreciably for the correct fit.

3. If the surface (low core index) of an individual

component matches the core (high core index) of the

complex, the distribution property of the surface region

should change significantly for the correct fit.

4. If the core (high core index) of an individual
component matches the surface (low core index) of the

complex, it cannot be a correct fit.

For scenarios 1, 2, and 4, a correlation function

works fine to distinguish the correct fit from wrong fits.

But for scenario 3, the distribution property is altered by

overlap from neighboring components in a complex

map and a correlation function is likely to fail. To

overcome the effect of overlap, and properly describe the
correct fit, we need to minimize the contribution from

scenario 3 in the correlation function calculation. This

can be achieved by ‘‘down-weighting’’ the match be-

tween a region with low core index in the map of indi-

vidual components and a region with high core index in

the complex map. We have chosen the following

weighting function to implement this idea,

wmn ¼
f a
m

f a
m þ bf a

n þ c
; ð6Þ

where wmn is the core-weighting function for the indi-

vidual component, m, to the complex, n. Three param-
eters, a, b, and c, control the dependence of the function

on the core indices. Typically, we chose a ¼ 2 and b ¼ 1,

and set c to be a very small constant (e.g., 10�6) to
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ensure wmn ¼ 0 when fm ¼ 0 and fn ¼ 0. We call this
function the core-weighting function because it is based

on the core index. Introducing this core-weighting

function leads to the core-weighted correlation function,

CWmnðX Þ ¼ ðXmXnÞw � ðXmÞwðXnÞw
dwðXmÞdwðXnÞ

; ð7Þ

where ðX Þw represents a core-weighted average of

property X:

ðX Þw ¼
P

i;j;k wmnði; j; kÞX ði; j; kÞP
i;j;k wmnði; j; kÞ

ð8Þ

and

dwðX Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 2Þw � ðX Þw

2
q

: ð9Þ

If we choose densities for the calculation, Eq. (7) results
in the core-weighted density correlation (CWDC),

CWDCmn ¼
ðqmqnÞw � ðqmÞwðqnÞw

dwðqmÞdwðqnÞ
; ð7aÞ

and if we choose to apply the Laplacian filter, Eq. (7)

results in the core-weighted Laplacian correlation

(CWLC):

CWLCmn ¼
ðr2qmr2qnÞw � ðr2qmÞwðr2qnÞw

dwðr2qmÞdwðr2qnÞ
: ð7bÞ

These core-weighted correlation functions are designed

to down-weight the regions overlapping with other

components, while emphasizing the regions with no

overlap. As explained above, the regions with significant

Fig. 1. The core indices of schematic two-dimensional maps of proteins A and B and their complex. Regions of protein density are colored red and

green, respectively, and a region of protein B containing an inaccessible cavity is shown in light green. Regions outside of the protein are white. The

numerical value of the core index for each grid point is indicated. Bold numbers indicate the core indices of proteins A and B that change upon

formation of the AB complex.
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overlap have small fm and large fn, and thus a small
weighting function. By down-weighting the overlapping

regions, the core-weighted correlation functions can

minimize the overlap effect in predicting the correct fit.

2.3. Grid-threading Monte Carlo search

The grid-threading Monte Carlo search is a combi-

nation of a grid search and Monte Carlo sampling
(Allen and Tildesley, 1987). The conformational space

is split into grid points and short Monte Carlo searches

are performed to identify local maxima close to the

grid points. The global maximum is then identified

from among the local maxima. This procedure is il-

lustrated in Fig. 2 for the simple case of a search in

two dimensions, where the conformational space is

divided into a 3 
 3 grid. The local maximum at (5,3)
has the highest correlation of all of the local maxima

and thus is the global maximum. Fig. 3 shows the

overall flow chart of the grid-threading Monte Carlo

search algorithm, which is carried out in the following

sequence:

(1) For a protein component, the six-dimensional

search space (three dimensions for translation and three

dimensions for orientation) is divided to provide initial
conformational states covering the whole space. The

translational space is divided into an nx 
 ny 
 nz grid

and at each translational grid point the orientational

space is divided into an na 
 nb 
 nc grid.

(2) A Monte Carlo search is performed from each

grid point to identify a local maximum in the vicinity.

The MC search lasts NMC steps. At each step the com-

ponent is translated along a random vector (xr, yr, zr)

and then rotated around x, y, z axes for random angles
(ar, br, cr), where xr, yr, zr are random numbers within

(�dmax, dmax), ar, br, cr are random numbers within

(�hmax, hmax), and dmax, hmax are the maximum trans-

lation and rotation step sizes, respectively. A trial

movement is accepted if

exp
ðCnew � ColdÞ

T

� 	
> n;

or is rejected otherwise. Here, Cold and Cnew are corre-

lations before and after the movement, T is a reduced
temperature which controls the sampling distribution. A

larger T corresponds to a ‘‘flatter’’ sampling distribution

and to a stronger ability to cross barriers during sam-

pling. n is a random number between 0 and 1. Typically,

we chose dmax ¼ 15�AA, hmax ¼ 30�, and T ¼ 0:01.

(3) Nonoverlapping local maxima are stored in a

sorted, linked list. Step 2 is repeated until all grid points

are searched.
(4) The global maximum is identified from the linked

list and assigned to the component. When there are

multiple copies of a given component, multiple global

maxima may be identified and assigned to components,

depending on how finely the grid-threading Monte

Carlo search is carried out. All local maxima with

Cmax � Ci 6DC are identified as global maxima. Here,

Cmax and Ci are the correlation coefficients of the true
global maximum among the linked list and a local

maximum, respectively. DC is the threshold of

correlation coefficient difference. Typically, we set

DC ¼ 0:01.

(5) Steps 1 to 4 are repeated until all components

have been fitted into the density map.

Fig. 2. The grid-threading Monte Carlo search in two-dimensional space. The conformational space is divided into a 3 
 3 grid. From each of the 9

grid points, short MC searches (shown as purple curves) are performed to locate a nearby local maximum. The global maximum is identified from

among these local maxima. Only conformations along the 9 Monte Carlo paths are searched.
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2.4. Maps of TCR variable domain and the E2 catalytic

domain complex

The map of the TCR variable domain was generated

from the X-ray structure (PDB code: 1A7N) using the

program ‘‘pdblur’’ in the SITUS package (Wriggers

et al., 1999). The atomic coordinates were interpolated

to a 3D lattice with a voxel space of 3�AA, with each

lattice point convolved with a Gaussian function to

lower the resolution to the indicated values (Wriggers

and Birmanns, 2001). When fitting an atomic structure

to a target map, a theoretical map is generated from the

atomic structure at the same resolution as the target

map for correlation function calculation.

Fig. 3. Schematic flow diagram of the grid-threading Monte Carlo search method to fit individual components into density maps.

68 X. Wu et al. / Journal of Structural Biology 141 (2003) 63–76



The experimental density map of the E2 icosahedral
core of pyruvate dehydrogenase was obtained as fol-

lows. The icosahedral complex of the E2 catalytic do-

main was prepared as described by Allen and Perham

(1997) and was kindly provided by Dr. Richard Perham

(University of Cambridge, Cambridge, UK). Images

were recorded from frozen-hydrated specimens on

SO163 film using a Tecnai F30 microscope operating at

300 kV at about 3 lm underfocus, at a nominal magni-
fication of 39; 000
. Films displaying low drift and

negligible astigmatism were scanned on a flatbed Zeiss

SCAI scanner using a pixel size of 7 lm. Pixels were

binned to obtain a final pixel size of 14 lm corre-

sponding to a distance of 3.59�AA in the specimen plane.

Estimates for underfocus values of each image were

determined computationally using algorithms in the

MRC package of image processing programs (Crowther
et al., 1996) for subsequent correction of the contrast

transfer function. Individual molecular images (total of

4346) were selected automatically using the program

BOXER within the EMAN image processing package

(Ludtke et al., 1999) and refined using the program

FREALIGN (Grigorieff, 1998) to the model of the E2

icosahedral core presented in Milne et al. (2002). The

resolution of the resultant model was estimated to be
�14�AA, corresponding to the resolution at which the

Fourier Shell Correlation between random halves of the

data set is 0.5.

3. Results

3.1. The performance of the core-weighted correlation

functions

To test the performance of the core-weighted corre-

lation functions relative to the standard density corre-

lation and to the contour-based Laplacian correlation

(Chacon and Wriggers, 2002), we used the a-chain of the

T-cell receptor (TCR) variable domain to examine how

well these correlations describe the correct fit. Fig. 4a

shows the map of the TCR variable domain with the
atomic model of the TCR superposed at the correct

position. For a correlation function to predict the correct

fit, it is essential that it has a global maximum near the

correct fit. However, due to the overlap from neighbor-

ing components, the global maximum may not occur at

the correct fit. Indeed, this was observed here when the a-

chain of TCR variable domain was fitted into the 15�AA
TCR map using simple density correlation; as illustrated
in Fig. 4b, the global maximum was far from the correct

position. Here, we operationally define a local maximum

with root-mean-square deviation (rmsd) of the Ca
backbone from the true structure less than 10�AA as the

‘‘near’’ maximum, and the highest local maximum far

from the correct fit, with rmsd >10�AA, as the ‘‘far’’

maximum. Table 1 lists the near maxima and far maxima

for the fit of the TCR a-chain with each of the four types
of correlation functions at various resolutions. Clearly,

the near maximum needs to be higher than the far

maximum for a correlation function to predict the cor-

rect fit. As can be seen, density correlation only predicted

the correct fit at a map resolution of 5�AA, but failed at

map resolutions of 10�AA or worse because the near

maximum is not higher than the far maximum. Lapla-

cian correlation extended the useful resolution limit to
15�AA, but failed at resolutions of 20�AA or worse. Core-

weighted density correlation identified the correct fit at

resolutions up to 20�AA, while core-weighted Laplacian

correlation was successful at map resolutions up to 30�AA.

Thus, for these noise-free maps, the use of core-weighted

correlation functions facilitates correct fitting at signifi-

cantly lower resolutions and is likely to be of special

utility when fitting X-ray structures of individual com-
ponents into electron microscopic density maps, which

are often determined in the resolution range of 10–30�AA.

3.2. Conformational search with the grid-threading Monte

Carlo method

For simple systems with a limited number of degrees

of freedom, it is possible to identify the best fit from a

Fig. 4. (a) The X-ray structure of TCR variable domain (PDB code: 1A7N) and a 15�AA map generated from the structure using the program pdblur

(Wriggers et al., 1999). The a- and b-chains are colored red and green, respectively. (b) The a-chain at the maximum density correlation position. The

b-chain is at its X-ray position for reference. The map is generated from the X-ray complex structure at resolution 15�AA.
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grid search of conformational space. For a single rigid
body, six independent degrees of freedom need to be

searched: three translational variables (x, y, z) and three

orientational variables (a; b; c). Since the accuracy of the
fit should depend upon the grid size of these parameters,

we fit the a-chain of the TCR variable domain into the

simulated 15�AA map of the entire complex using core-

weighted density correlation and a range of grid sam-

pling sizes. The highest correlation values obtained at

each of the grid sizes is shown in Fig. 5. As can be seen,

an exponential increase in grid sampling size was re-

quired to improve the correlation values, indicating that
a grid search is computationally inefficient.

An alternative approach to identify the correct fit is

to use the Monte Carlo (MC) search algorithm, which is

widely used in sampling multidimensional conforma-

tional space (Allen and Tildesley, 1987) in a variety of

applications. This method works efficiently for homo-

geneous systems, but less well for systems containing

large energy barriers. In the latter, the result of an MC
search often depends upon the starting position and the

simulation length. To test the applicability of this

method to low-resolution density maps, we again fit the

a-chain of the TCR variable domain into a 15�AA simu-

lated map of the complex. We performed 64 MC sear-

ches with different starting positions. These starting

positions are the 64 grid points after splitting the six-

dimensional conformational space into a 2 
 2 
 2

2 
 2 
 2 grid. Fig. 6 illustrates the core-weighted den-

sity correlation coefficients between the maps of the

Table 1

Comparison of the four types of correlation functions for fitting the a-chain of the TCR variable domain into simulated maps of the TCR ab complex

at various resolutions

Types Resolution, �AA Near maximum� Far maximum

rms, �AA Correlation rms, �AA Correlation

DC 5 0.71 0.638 21.8 0.598

10 5.1 0.738 22.9 0.819

15 0 0.716 23.6 0.886

20 0 0.737 24.3 0.929

30 0 0.801 22.9 0.970

40 0 0.838 23.8 0.985

LC 5 1.2 0.400 25.1 0.147

10 1.0 0.586 24.4 0.334

15 1.6 0.605 23.9 0.533

20 2.1 0.623 24.4 0.674

30 0 0.642 23.9 0.871

40 0 0.687 23.4 0.946

CWDC 5 1.2 0.711 21.7 0.401

10 1.8 0.875 22.0 0.784

15 2.8 0.928 22.2 0.910

20 5.3 0.928 22.9 0.925

30 8.4 0.949 23.2 0.962

40 12.6 0.971 23.2 0.984

CWLC 5 0.8 0.426 23.0 0.287

10 1.2 0.771 25.2 0.333

15 1.9 0.892 23.0 0.676

20 1.8 0.936 20.7 0.824

30 4.9 0.930 22.8 0.907

40 9.1 0.925 23.1 0.961

* rms ¼ 0�AA indicates no near maximum (rms < 20�AA) was detected. The X-ray position of the a-chain was used to calculate the correlations.

Fig. 5. The maximum core-weighted density correlations between the

map of TCR a-chain and the map of TCR ab complex identified from

grid searches. These maps are generated at a resolution of 15�AA. The

black dashed line represents the correlation value at the position cor-

responding to the X-ray coordinates. The six-dimensional conforma-

tional space was divided into a n
 n
 n
 n
 n
 n grid with n6 grid

points for grid search.
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a-chain and the ab complex measured throughout each

of these searches. The ability to converge to the correct

fit and the speed of convergence depended significantly

upon the starting position. Certain initial positions led

to convergence with only 10 MC steps, others required

up to 90 steps, and yet others never displayed positive
correlation values even after 100 steps. Thus, a useful

strategy is to identify the best local fits through short

MC searches starting from discrete grid points covering

conformational space, and to select the global best fit

among these candidate fits, which is the basis of our

proposed grid-threading Monte Carlo search.

3.3. Fitting of the a-chain of the TCR variable domain

To assess how well the grid-threading Monte Carlo

method works in conjunction with various correlation

functions, 1000 step MC searches were conducted from

each of the 64 (2 
 2 
 2 
 2 
 2 
 2) grids in confor-

mational space, using an initial displacement of 15�AA
and an initial rotational step size of 30�. Table 2 lists

these fitting results, together with the results obtained

using the Situs 2.0 package (Chacon and Wriggers,

2002). An rmsd value of larger than 20�AA indicates that

the search converged to a far maximum. MC searches

undertaken with density correlation alone did not

converge to the correct fit of the a-chain (Table 2). This

is an expected result since all test map resolutions were
15�AA or worse, where density correlation does not have

a global maximum near the correct fit (see Table 1).

Laplacian correlation, core-weighted density correla-

tion, and core-weighted Laplacian correlation all found

best fits close to the X-ray position at resolution 15�AA.

Laplacian correlation failed to generate the correct fit

at resolutions worse than 15�AA. Core-weighted density

correlation produced a correct fit up to 20�AA resolution,
and core-weighted Laplacian correlation succeeded

even at resolutions of 30�AA. The results of SITUS 2.0

are comparable to those obtained using Laplacian

correlation; i.e, it worked at resolutions of 15�AA or

better.

3.4. Fitting of the E2 catalytic domain of pyruvate

dehydrogenase

The applicability of the grid-threading Monte Carlo

method to fit components into experimental low-resolu-

tion density maps was tested using a 14�AA electron mi-

croscopic map of the icosahedral core of pyruvate

dehydrogenase (Fig. 7a), an 1.8-MDa complex comprised

of 60 copies of the E2 catalytic domain, whose structure

(Fig. 7b) has been determined using X-ray crystallo-
graphic methods. We performed grid-threading Monte

Carlo searches with core-weighted Laplacian correlation;

Table 3 lists the rms deviations from the X-ray structure

and total cpu times of these searches. When 64 (2 
 2

2 
 2 
 2 
 2) grids were searched, only 34 of 60 correct

fits were identified, likely because the grid size is too coarse

for the short MC searches (NMC ¼ 5000 steps) to search

out all 60 global maximum positions. When 729 (3 
 3

3 
 3 
 3 
 3) or 4096 (4 
 4 
 4 
 4 
 4 
 4) grids were

searched, all 60 monomers could be correctly fit into the

experimental density map. Note that using finer grids did

not result in a proportional increase in cpu time. This is

because with finer grids, more best fits can be identified in

each loop over all grid points, and fewer loops are need to

search out all 60 best fits. Fig. 8 shows the best and worst

fits among the 60 fitting results identified with the
(4 
 4 
 4 
 4 
 4 
 4) grid, which are both very close to

the positions of the corresponding monomer in the X-ray

structure.

Table 3 also compares the results from SITUS 2.0

package with different angular grid size and different

solution numbers. The two most important parameters

that bear on the results of automated fitting using

Fig. 6. The core-weighted density correlation function between the

map of TCR a-chain and the map of the TCR ab complex during

Monte Carlo searches starting from each of the 2 
 2 
 2 
 2 
 2 
 2

grid points. The Monte Carlo searches were performed with

dmax ¼ 15�AA, hmax ¼ 30�, and T ¼ 0:01. Each line represents one

Monte Carlo search procedure.

Table 2

The rms deviations of the best fits from the X-ray structure using

different correlation functions

Resolution 15�AA 20�AA 30�AA 40�AA

Situs 2.0� 0.4 24.2 23.9 23.9

DCa 24.3 – – –

LCa 1.8 24.3 – –

CWDCa 1.3 1.2 20.7 –

CWLCa 1.5 2.2 1.9 21.9

* The SITUS 2.0 program colores is used with degree ¼ 20, cut-

off ¼ 0.0.
a The grid-threading MC is performed with a 2 
 2 
 2 
 2 
 2 
 2

grid, Nmc ¼ 1000, dmax ¼ 15�AA, hmax ¼ 30�, and T ¼ 0:01.
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SITUS 2.0 are the angular grid size and the number of

solutions identified by the fitting algorithm. A small

angular grid size results in a more detailed search in
orientational space, but requires longer computational

times. The number of solutions identified should be

equal to or larger than the number of fits expected. If the

search was restricted to identifying only 60 solutions, the

algorithm in SITUS 2.0 did not arrive at all 60 correct

fits, independent of whether the angular grid size is 20,
10, or 5�. This was because some of the best fits overlap

with each other and therefore must be discarded. If the

search criteria were relaxed to identify 100 solutions, the

Fig. 7. (a) Surface representation of the experimental map (at 14�AA resolution) of the icosahedral complex formed from 60 copies of the E2 catalytic

domain of the pyruvate dehydrogenase. (b) The X-ray structure of the same complex (PDB code: 1B5S).

Fig. 8. Comparison of the location of the E2 catalytic domain obtained using a GTMC search (green) with that of the corresponding domain from

the X-ray structure (red). The experimental map obtained by electron microscopy is shown in blue. (a) The best fit obtained, rms¼ 2.13�AA; (b). The

worst fit obtained, rms¼ 6.52�AA. The grid-threading Monte Carlo search was conducted with a 4 
 4 
 4 
 4 
 4 
 4 grid, Nmc ¼ 5000, dmax ¼ 30�AA,

hmax ¼ 30�, and T ¼ 0:01. The core-weighted Laplacian correlation function was used. The average root mean square deviation of the Ca backbone

(averaged over all 60 copies) between the X-ray structure and the fitted coordinates is 3.73�AA.
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Table 3

The fitting results of the 60 E2 catalytic domains of the pyruvate dehydrogenase in the icosahedral complex using the grid-threading Monte Carlo

search algorithm (GTMC) with the core-weighted Laplacian correlation function and the colores program from SITUS 2.0�

Monomer

index

GTMC SITUS 2.0

Ngrid ¼ 26 Ngrid ¼ 36 Ngrid ¼ 46 Deg ¼ 20�
Nex ¼ 60

Deg ¼ 20�
Nex ¼ 100

Deg ¼ 10�
Nex ¼ 60

Deg ¼ 10�
Nex ¼ 100

Deg ¼ 5�
Nex ¼ 60

Deg ¼ 5�
Nex ¼ 100

1 2.28 1.68 2.13 2.17 2.17 2.18 2.18 2.18 2.18

2 2.53 2.07 2.15 2.30 2.30 2.30 2.30 2.30 2.30

3 2.57 2.25 2.28 2.41 2.41 2.40 2.40 2.43 2.43

4 2.58 2.55 2.38 2.58 2.46 2.46 2.46 2.46 2.46

5 2.59 2.69 2.43 2.65 2.58 2.59 2.59 2.59 2.59

6 2.87 2.78 2.53 2.86 2.65 2.87 2.65 2.86 2.65

7 2.94 2.85 2.71 2.94 2.86 2.93 2.87 2.93 2.86

8 3.13 2.88 2.75 2.94 2.94 2.98 2.93 2.98 2.93

9 3.24 3.03 2.82 2.98 2.94 3.02 2.93 3.01 2.94

10 3.52 3.07 2.84 3.02 2.97 3.18 2.98 3.11 2.99

11 3.61 3.07 2.86 3.11 3.02 3.21 3.02 3.18 3.02

12 3.72 3.13 2.98 3.18 3.11 3.21 3.02 3.20 3.02

13 3.72 3.15 3.01 3.20 3.18 3.41 3.12 3.25 3.11

14 3.74 3.19 3.04 3.22 3.20 3.43 3.18 3.42 3.18

15 3.77 3.19 3.07 3.41 3.22 3.52 3.21 3.52 3.20

16 3.79 3.22 3.14 3.53 3.41 3.52 3.23 3.54 3.25

17 3.81 3.23 3.17 3.55 3.44 3.54 3.41 3.60 3.42

18 3.87 3.33 3.24 3.61 3.52 3.60 3.44 3.63 3.44

19 3.90 3.52 3.32 3.64 3.53 3.60 3.52 3.64 3.52

20 3.96 3.53 3.34 3.66 3.55 3.64 3.53 3.67 3.52

21 3.98 3.55 3.35 3.67 3.61 3.64 3.54 3.67 3.54

22 4.02 3.57 3.38 3.67 3.61 3.66 3.60 3.76 3.60

23 4.26 3.57 3.38 3.67 3.64 3.76 3.61 3.82 3.61

24 4.34 3.62 3.41 3.76 3.66 3.82 3.64 3.83 3.64

25 4.43 3.62 3.44 3.77 3.67 3.83 3.64 3.88 3.66

26 4.49 3.63 3.49 3.78 3.67 3.88 3.66 3.92 3.67

27 4.52 3.70 3.50 3.83 3.67 3.92 3.68 3.95 3.67

28 4.63 3.79 3.61 3.83 3.76

(�#19)

3.95 3.68 3.97 3.68

29 4.82 3.81 3.65 3.92 3.77 3.96 3.76 4.05 3.76

30 4.95 3.84 3.66 3.94 3.78 4.04 3.78

(�#21)

4.14 3.82

31 5.08 3.87 3.73 3.96 3.83 4.13 3.78 4.20 3.83

32 5.51 3.89 3.84 4.21 3.83 4.20 3.82 4.21 3.88

33 5.63 3.91 3.87 4.23 3.92 4.22 3.83 4.24 3.92

34 5.87 3.94 3.91 4.23 3.94

(�#29)

4.23 3.88

(�#31)

4.24 3.95

35 15.15 3.95 3.94 4.24 3.96 4.24 3.92 4.26 3.97

36 15.52 3.98 3.95 4.26 4.02 4.25 3.96 4.27 4.05

37 16.36 4.01 3.95 4.27 4.04 4.26 3.97 4.27 4.14

38 17.28 4.04 3.99 4.30 4.18 4.27 4.04 4.41 4.20

39 18.15 4.09 4.03 4.42 4.21 4.27 4.13 4.52 4.21

40 19.25 4.13 4.10 4.51 4.23 4.39 4.18

(�#39)

4.58 4.24

41 19.30 4.17 4.17 4.60 4.24 4.42 4.20 4.79 4.24

42 19.39 4.21 4.19 4.79 4.24 4.43 4.22 4.84 4.25

43 19.88 4.23 4.21 4.86 4.26 4.52 4.23 5.17 4.26

44 20.43 4.24 4.26 5.20 4.27 4.60 4.24 5.23 4.27

45 20.64 4.25 4.28 5.21 4.30 4.65 4.25 5.28 4.27

46 22.30 4.27 4.39 5.23 4.39 4.80 4.26 5.30 4.39

47 29.28 4.28 4.42 5.29 4.42 4.84 4.27 5.30 4.41

48 30.15 4.29 4.44 5.30 4.51 5.17 4.27 5.32 4.42

49 31.20 4.30 4.47 5.30 4.63 5.23 4.39 – 4.52

50 31.90 4.35 4.50 5.34 4.80 5.29 4.42 – 4.58

51 32.14 4.37 4.50 – 4.86 5.29 4.42 – 4.65

52 32.29 4.37 4.54 – 5.20 5.30 4.52 – 4.79

53 32.34 4.43 4.58 – 5.21 – 4.58 – 4.84

54 33.09 4.59 4.63 – 5.23 – 4.65 – 5.17

55 33.79 4.76 4.65 – 5.28 – 4.79 – 5.23
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algorithm in SITUS 2.0 arrived at 66 best fits with an

angular grid size of 20�, 58 of which represent correct fits

(see rmsd values in Table 3). With a reduced angular

grid size of 10�, SITUS 2.0 identified 63 best fits, 3 fits of

which overlap with other fits. When the angular grid size

was reduced to 5�, the SITUS 2.0 algorithm correctly

placed all 60 monomers in the map. However, the grid-

threading Monte Carlo search with 729 grid points was
substantially quicker to arrive at the same result, taking

about 8.6 h as compared to 133.8 h with SITUS 2.0

under similar computing conditions.

4. Discussion

In this work, we have described a core-weighting
approach to overcome some of the problems that can

arise in the fitting of atomic structures into low-reso-

lution maps with multiple components. Using two

model systems, we have demonstrated that core-

weighted correlations have significantly improved

sensitivity to distinguish the correct fit when compared

with more traditional correlations. The construction of

a molecular model for a complex macromolecular
assembly is thus simplified from a many-body search

problem to a series of single-body search problems,

making the computational search for the correct fit

much easier.

Like the core-weighting approach developed here,

the Laplacian filter adopted by Chacon and Wriggers

also extends the resolution limit significantly. But un-

like the core-weighting approach, the use of a Lapla-

cian filter alone does not adequately compensate for

the overlapping effects resulted from neighboring
components that are inherent in low-resolution maps.

In addition, as pointed out by Chacon and Wriggers

(2002), the Laplacian amplifies high-frequency noise in

the map, which may cause the generation of false

positives. In turn, the core-weighting correlation func-

tion has its own limits. It relies on the fit of the non-

overlap regions of the individual components, and

therefore requires that these regions exhibit sufficiently
distinct density distributions for obtaining a reliable fit.

As shown in the two examples studied here, despite

inheriting the noise amplification feature of Laplacian

filtering, the combination of the Laplacian filter and

the core-weighting function shows better performance

at lower resolutions than the other correlation func-

tions that were tested. It should be noted these results

are based on the noise-free maps. The sensitivity of
these correlation functions to the presence of noise

must be tested further.

Table 3 (continued)

Monomer

index

GTMC SITUS 2.0

Ngrid ¼ 26 Ngrid ¼ 36 Ngrid ¼ 46 Deg ¼ 20�
Nex ¼ 60

Deg ¼ 20�
Nex ¼ 100

Deg ¼ 10�
Nex ¼ 60

Deg ¼ 10�
Nex ¼ 100

Deg ¼ 5�
Nex ¼ 60

Deg ¼ 5�
Nex ¼ 100

56 33.83 4.84 4.69 – 5.30 – 4.84 – 5.24

57 33.96 5.01 5.26 – 5.30 – 5.17 – 5.28

58 34.77 5.02 5.48 – 5.34 – 5.23 – 5.30

59 35.00 5.29 5.51 – 12.52

(�#26)

– 5.23 – 5.30

60 37.02 5.63 6.52 – 12.62

(�#50)

– 5.29 – 5.31

– – – – – 13.86

(�#15)

– 5.29 – –

– – – – – 14.47

(�#53)

– 5.30 – –

– – – – – 14.91

(�#6)

– 5.34 – –

– – – – – 15.38

(�#47)

– – – –

– – – – – 15.54

(�#8)

– – – –

– – – – – 15.80

(�#49)

– – – –

Average,
�AAa

3.90 3.76 3.73 3.85 3.83 3.87 3.85 3.85 3.85

Time,

hours

1.84 8.61 19.43 9.05 11.53 19.31 22.00 130.78 133.80

Ngrid ¼ M6 indicates a M 
 M 
 M 
M 
 M 
M grid is used in a GTMC search with Nmc ¼ 5000, dmax ¼ 30�AA, hmax ¼ 30�, and T ¼ 0:01. For

SITUS fitting, ‘‘Deg’’ represents the angular grid size and ‘‘Nex’’ represents the number of the candidate solutions to be refined.
* This table lists the rms deviations of all solutions obtained in the fittings. Some solutions overlapping with other solutions are labeled out with

‘‘�#XX’’, where XX is the overlapping solution number.
a The averages are calculated over those solutions with correct fit (rms < 10�AA).
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The use of the grid-threading Monte Carlo approach
greatly enhances the speed of the calculation compared

to exhaustive searches. This is obviously an important

advantage for larger assemblies. The efficiency of the

grid-threading Monte Carlo search comes from the fact

that it only searches certain paths within the confor-

mational space. Since an exhaustive search is not carried

out, this method assumes that at least one of the paths

starting from the grid points leads to the correct fit.
However, because an exhaustive search is not per-

formed, the grid size must be sufficiently fine, say,

3 
 3 
 3 
 3 
 3 
 3 or 4 
 4 
 4 
 4 
 4 
 4, to ensure

that the correct fit is within the reach of a short Monte

Carlo search initiated from nearby grid points.

For single-body searches, Fourier correlation theory

and the fast Fourier transform (FFT) provide an at-

tractive way to scan rapidly the correlation through the
translation space. The SITUS 2.0 program (Chacon and

Wriggers, 2002) uses this approach to achieve an effi-

cient exhaustive search in translation space. To take

advantage of this approach, we can modify the core-

weighting function to the following form,

w0
mn ¼

f a
m

f a
n þ b

; ð6aÞ

where b is a nonzero constant. Any core-weighted

summation can be calculated through the reverse Fou-

rier transform of the product of two Fourier transforms:

X
i;j;k

w0
mnXmYn ¼

X
i;j;k

f a
mXm

Yn
f a
n þ b

¼ FFT�1 FFT ðf a
mXmÞ




 FFT

Yn
f a
n þ b

� 	�
:

ð10Þ

Eq. (10) can be applied to all the core-weighted

summations through Eqs. (7)–(9) to efficiently scan the

core-weighted correlations in translation space. It

should be noted that the introduction of the core-

weighting function requires several more summations to

be calculated through Eq. (10), as compared to the

standard correlations.

One advantage of the grid-threading Monte Carlo
search is that it can be extended to multibody systems

without an exponential increase in the computational

cost. Monte Carlo search methods are designed for

multidimensional space sampling and have been widely

used in many-body systems (Allen and Tildesley, 1987).

Directly performing a multibody search does not require

a target function to distinguish the correct fits of each

individual domain to a complex map, because the over-
lap between neighboring components can be calculated

directly from all components. Another advantage of this

approach is that it is convenient for molecular modeling,

including structure building, manipulation, and refine-

ment based on low-resolution maps. It is also relatively

easy to incorporate constraints to components during a
search. The grid-threading MC method for construction

of complex structures from EM maps has been imple-

mented into CHARMM (Brooks et al., 1983) and will be

available at its next release.
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